Cerâmica Industrial
Cerâmica Industrial
Artigo Original

Caracterização de Vidros Sódico-cálcicos Produzidos a Partir de Resíduos Sólidos

B.G.O. Maia, M.T. Souza, S. Arcaro, T.M.N. de Oliveira, T.B. Wermuth, A.P. Novaes de Oliveira, J.B. Rodrigues Neto

Downloads: 4
Views: 636


Neste trabalho foram utilizadas cascas de ovos e conchas de ostras (como fontes de óxido de cálcio) e cinzas de casca de arroz (como fonte de sílica), para a produção de vidros sódico-cálcicos, tipicamente empregados para a produção de embalagens. Diferentes proporções destes resíduos e demais matérias-primas complementares foram preparadas e fundidas, em cadinho de platina, a 1550 °C por 2 h para a produção de amostras de vidros, que, em uma etapa posterior, foram caracterizadas quanto as suas propriedades físicas, químicas e térmicas. Foram obtidos vidros transparentes incolores e de coloração âmbar com propriedades similares àquelas de vidros comerciais de mesma natureza química.


vidros, resíduos sólidos, cinza da casca de arroz, casca de ovo, concha de ostra.


1. BARBIERI, L., BONAMARTINI, A. C., LANCELLOTTI, I. Alkaline and alkaline-earth silicate glasses and glassceramics from municipal and industrial wastes. Journal of the European Ceramic Society, v. 20, 2477-2483, 2000.

2. ANDREOLA, F. et al. Recycling of industrial wastes in ceramic manufacturing: state of art and glass case studies. Ceramics International, v. 42, 13333-13338, 2016.

3. BANSAL, N. P. R.H Doremus, Handbook of Glass Properties, Academic Press, New York, 1986.

4. SCHAEFFER, H. A. Scientific and technological challenges of industrial glass melting. Solid State Ionics, v. 105, 265-270, 1998.

5. VARSHNEYA, A. K. Fundamentals of Inorganic Glasses, Society of Glass Technology, Sheffield, 2006.

6. SHELBY, J. E. Introduction to Glass Science and Technology, Royal Society of Chemistry, USA, 2005.

7. YOON, G. L. et al. Chemical–mechanical characteristics of crushed oyster-shell. Waste Management (New York, N.Y.), v. 23, 825-834, 2003.

8. BERNARDO, E. et al. Reutilization and stabilization of wastes by the production of glass foams. Ceramics International, v. 33, n. 6, 963-968, 2007.

9. NAGRALE, S. D., HAJARE, H., MODAK, P. R. Utilization of rice husk ash. Int. J. Eng. Res. Appl., v. 2, n. 4, 1-5, 2012.

10. DELLA, V. P., KÜHN, I., HOTZA, D. Rice husk ash as an alternative source for active silica production. Materials Letters, v. 57, n. 4, 818-821, 2002.

11. FAO - Food and Agriculture Organization of the United Nations. Fao Stat, rice production. Retrieved from: http://www.fao.org/faostat/en/#data. Accessin: January, 2017.

12. Conab - COMPANHIA NACIONAL DE ABASTECIMENTO. Levantamento de Safra 2015/2016. Retrieved from: http://www.conab.gov.br/conteudos.php?a=1252&t=2 Accessin: January, 2017.

13. GUTIERREZ, R. M., DELVASTO, S. Impiego della lolla di riso nei laterizi. Materiali Processi, v. 1, 1-3, 1995.

14. KRISHNARAO, R., SUBRAHMANYAM, J., JAGADISH, T. K. Studies on the formation of black particles in rice husk silica ash. Journal of the European Ceramic Society, v. 21, 99-104, 2001.

15. BONDIOLI, F. et al. Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. Journal of the American Ceramic Society, v. 93, n. 1, 121-126, 2009.

16. ANDREOLA, F. et al. Rincón, M. Romero, L. Barbieri, Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceramics International, v. 39, n. 5, 5427-5435, 2013.

17. HWANGA, C. L., HUYANA, T. P. Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks, Constr. and build. Mat., v. 93, n. 15, 335-341, 2015.

18. BEHNOODA, A. et al. Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Constr. and build. Mat., v. 96, n. 15, 172-180, 2015.

19. USDA - United States Department of Agriculture. World Agricultural Supply and Demand Estimates (WASDE-543), 2015. Retrieved from: http://www.usda.gov/oce/commodity/wasde/, Accessin: January, 2017.

20. OLIVEIRA, D. A., BENELLI, P., AMANTE, E. R. Key Elements (Stages and Tools) for a Sustainable World, A literature review on adding value to solid residues: egg shells. Journal of Cleaner Production, v. 46, 42-47, 2013.

21. GERGELY, G. et al. Preparation and characterization of hydroxyapatite from eggshell. Ceramics International, v. 36, 803-806, 2010.

22. STADELMAN, W. J. Eggs and egg products - Encyclopedia of Food Science and Technology. John Wiley & Sons, New York, 2000.

23. TSAI, W. T. et al. Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresource Technology, v. 99, n. 6, 1623-1629, 2008.

24. PLIYA, P., CREE, D. Limestone derived eggshell powder as a replacement in Portland cement. Construction & Building Materials, v. 95, n. 1, 1-9, 2015.

25. YANG, E. I., YI, S. T., LEEM, Y. M. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cement and Concrete Research, v. 35, 2175-2182, 2005.

26. LUO, H. et al. Waste oyster shell as a kind of active filler to treat the combined waste water at an estuary. Journal of Environmental Sciences (China), v. 25, n. 10, 2047-2055, 2013.

27. KWON, H. B. et al. Recycling waste oyster shells for eutrophication control. Resources, Conservation and Recycling, v. 41, 75-82, 2004.

28. CHONG, M. H. et al. Fire-retardant plastic material from oyster-shell powder and recycled polyethylene. Journal of Applied Polymer Science, v. 99, 1583-1589, 2006.

29. APPEN, A. A. Chemistry of glass. Leningrad: Khimiya Stekla, 1970.

30. CHOUDHARY, M. K., POTTER, R. M. Heat Transfer in glass forming melts. Chapter 9 in: Properties of glass- formation melts, CRC Press, Florida, 2005.

31. SILVA, R. A., PETTER, C. O., SCHNEIDER, I. A. H. Avaliação da perda da coloração artificial de ágatas. Rev. Esc. Minas, v. 60, 477-482, 2007.

32. BIRON, I., CHOPINET, M. Colouring, decoloring and opacifing of glass. Modern methods for analysing archaeological and historical, Wiley, 2013.

33. FABER, A. J. Optical properties and redox state of silicate glass melts. Comptes Rendus. Chimie, v. 5, 705-712, 2002.

34. NAVARRO, J. M. F. El Vidrio. 6th ed. Madrid: CSIC, 2003.

35. RATCLIFFE, E. H. A Survey of Most Probable Values for the Thermal Conductivities of Glasses Between About – 150 and 100 °C, Including New Data on Twenty Two Glasses and a Working Formula for the Calculation of Conductivity from Composition. Glass Technology, v. 4, n. 4, 113-128, 1963.

36. HARPER, C. Handbook Of Ceramics Glasses, and Diamonds, 1sted., McGraw-Hill, 2001.

37. OLIVEIRA, A. P. N. et al. Properties of Glasses Belonging to the Li2 O - ZrO2 - SiO2 System. Physics and Chemistry of Glasses, v. 39, n. 4, 100-103, 1998.

594954aa0e8825bd721436b6 ci Articles
Links & Downloads

Cerâm. ind.

Share this page
Page Sections